——

SRS
‘§\\§\\\\\\

y |

IR R AR
ISR R

WA _/_\ N
\\\\\\\\\\\\\\\ \\\\ \\\\\\\‘
\\\\\\\\‘
AR

\

TR
M \

YAGOfuzz

SCALABLE FUZZING FOR CONNECTED SYSTEMS

Created by :
Yagoba GmbH

Contents

O

ONOBONONONO

Executive Summary

Introduction

Fuzz Testing

YAGOfuzz

Fuzzing Tools Compared

Case Study

YAGOfuzz Experts

10

15

20

Executive
Summary

In today’s hyper-connected digital
infrastructure, software-driven
technologies lie at the core of
innovation in sectors such as
automotive, medical devices, and
loT.

However, the growing complexity
of software-driven functionalities
brings significant cybersecurity
risks.

Fuzz testing has emerged as a

critical technique to expose hidden
vulnerabilities in protocols and
applications.

Page.O1

YAGOfuzz is a powerful,
customizable black-box
fuzzing framework
designed to address
the limitations of
conventional fuzzing
tools.

With full access to
YAGOfuzz’s source
code, no running
license fees, and
support for custom
configurations, the tool
offers both depth and
flexibility in
vulnerability detection.

https://www.yagoba.com/

With increasing regulatory
requirements and the
complexity of connected
systems, fuzzing is now a
security imperative.

Traditional fuzzing tools, while
valuable, are often limited by
costly licenses, seat restrictions,
and rigid configurations that
make them difficult to set up
and adapt.

YAGOfuzz removes these
barriers. With no license or seat
limitations, full source code
access, and total control over
test data, it gives organizations
the flexibility to adapt fuzzing to
their needs and integrate it
seamlessly into their security
processes.

Page.02

O
O
O
O
O
O
O
O

YA
(— PEN

Fuzz
Testing

Fuzz testing, also known as fuzzing, is a
proven technique for discovering
vulnerabilities by feeding a system, that
we want to test, unexpected or
malformed inputs.

Fuzzing requires a tool called the fuzzer,
which generates random or unexpected
inputs, which are then sent to the Target
of Evaluation (TOE). The fuzzer then
monitors the TOE for crashes and
unexpected behaviour. If the TOE remains
stable, new input is created, and the
fuzzing process continues. If the crash
occurs, the defective input is marked and
stored in the crash database.

YA
SO
(— PEN

Fuzzers can be classified based on the access they
have to the TOE internals and based on how they

ONONONONONONONG

utilize this knowledge to improve fuzzing.

Blackbox fuzzers do not employ any techniques to
infer knowledge about the TOE. To improve
performance and reduce the overhead caused by
only sending strictly random inputs, some fuzzers
require testers to provide more information about
the input format. This knowledge is then used to let
the fuzzer know which parts of the input should be
randomly generated and which parts must stay
constant.

Whitebox fuzzers have access to the internals of the
TOE and they try to take advantage of this
knowledge to reach the deeper states of the system
under test.

Greybox fuzzers are considered the “middle ground”
between whitebox and blackbox fuzzers, as they
have some knowledge about the TOE, in contrast to
blackbox fuzzers. Still, this knowledge is less
extensive than the one that whitebox fuzzers have.
Greybox fuzzers usually employ instrumentation as a
method of collecting feedback that will be used to
improve the inputs for the TOE.

n
—
)
N
N
D)
LL
Y-
O
7))
0
>
|_

ONONONONONONONG)

(ONONONONONONG
(ONONORONONGC,
(ONONONONG)

(O ONONG

(O ONO)

O O

@)

Fuzzing Techniques

Integration with SDLC

Fuzz testing can be integrated at various stages of the software development

YA
(— PEN

Mutates valid inputs to produce variants that test the
system's behaviour.

Generates inputs based on a structural knowledge of
the data (focusing on the ability to carry dynamic
values).

Utilizes comprehensive protocol or format
knowledge, and sometimes even a state machine, to
produce efficient, targeted inputs.

Uses mutations and feedback to refine and improve
input generation over time.

lifecycle (SDLC), including development, integration testing, and release. It

complements traditional static and dynamic analysis methods by simulating real-

world input conditions that are difficult to anticipate.

Benefits of Fuzzing

It uncovers
previously
unknown security
flaws before
attackerscan
exploit them.

By exposing It simulates real-

systems to world misuse,
unpredictable helping
inputs, it helps developers

validate and
harden input
validation logic.

strengthen code
against crashes
and edge cases.

Page.05

It supports
compliance with
industry
standards that
require proactive
security
verification.

(ONONONONONONG A
(ONONORONONG, =0
(ONONORONG) BsA
(O ONONG

(O ONO)

O O

@)

ONONONONONONONG)

Limitations in Existing Fuzzing Tools

Despite its proven effectiveness, fuzz testing adoption has been hindered by
several persistent shortcomings:

Configurability

Many fuzzers lack flexible configuration mechanisms, especially when it comes to
defining what parts of the input should be fuzzed and which should remain static.
Moreover, configuration files are often written in proprietary formats that are
difficult to understand, reuse, or adapt across different protocols or systems.

Handling of Stateful Systems

Network protocols and complex applications often involve multi-step interactions
where the system’s response depends on its internal state or previous inputs. Most
fuzzers are designed for stateless testing and fail to track the state transitions
required to test such systems effectively.

High Operational Costs

Traditional tools impose their rigid and expensive licensing models. Many leading
fuzzers charge per seat or per project, often requiring annual subscriptions. These
costs escalate rapidly in large-scale environments such as automotive
development, where multiple teams, ECUs, and test environments are in constant

flux.

YAGOfuzz was created to address these
limitations head-on, offering a modern,
flexible, and cost-effective approach for
fuzzing at scale.

YA
(— PEN

YAGOfuzz

Not just a black-box fuzzer, but a
scalable fuzzing framework designed
for easy configuration, stateful system
support, and smarter bug detection.

YAGOfuzz introduces a unified configuration format that
defines the structure of the input packets, specifies which
fields are to be fuzzed, and allows for the inclusion of fixed
values where necessary. The configuration format can be
reused across different protocols or projects, saving time and
reducing the overhead associated with setting up new fuzzing
campaigns.

Easy, Flexible
Configuration

Many fuzzers only work with single, stateless inputs. YAGOfuzz

Support for is different. It can model multi-step interactions using built-in
Stateful finite state machine logic. That means you can test login
Systems sequences, authentication flows, or any protocol that requires

a conversation, not just one-off requests.

Not every bug causes a crash. YAGOfuzz goes beyond simple
Smarter Bug fault detection by watching system logs, outputs, and other
Detection behavioural signals that indicate something went wrong,
helping you catching both visible and hidden issues.

YAGOfuzz’s architecture is modular and supports distributed
operation, allowing multiple Workers to run on different
machines, all reporting back to a centralized Monitor. This
makes YAGOfuzz well-suited for large-scale fuzzing
campaigns that target complex systems. The ability to start
and stop Monitors without interrupting ongoing fuzzing
processes further enhances its flexibility.

Scalable
Architecture

Page.07

YA
(— PEN

Modular
Architecture

The YAGOfuzz framework is organized into three key components:

e Worker(s) are the engines that generate test data, communicate with the
Target of Evaluation, handle the database, and monitor direct and indirect TOE
outputs. They execute the actual fuzzing, supporting a parallel execution.

e Monitor oversees the fuzzing process by tracking worker activity and TOE
status. It provides a central dashboard for managing and observing ongoing
operations.

e Target of Evaluation (TOE) represents the item being tested, such as a device,
system, or product.

This modular design makes YAGOfuzz highly adaptable, enabling it to scale across
multiple environments while maintaining clear separation of responsibilities.

Monitor Worker(s) TOE

Dashboard for the fuzzing Main fuzzing engine(s) Iltem being tested.
process e Data Creation Also called:
e Status observation of ¢ TOE Communication e Device under test (DUT)
Worker(s) e Output/File Watching e System under test (SUT)
e Status check of TOE e Start/Reset/Stop e Product under test (PUT)
Mechanism

Page.08

YA
(— PEN

Architecture
Overview

YAGOfuzz architecture consists of a modular Worker core connected to monitoring
tools and the Target Of Evaluation (TOE).

The architecture is fully extensible and headless-ready, enabling seamless
integration into CI pipelines and protocol-specific test benches.

(Automation J (Configuration FiIeJ ' Input File(s) il'

Inputs
i
p——————— 5
Target Of o TOE) /
Evaluation | Output File |
'~ ’
Outputs
¥ v
Monitor Specific Worker Specific)
i i Database File
Log File Log File

Fuzzing Tools
Compared

Unlike traditional tools, YAGOfuzz
combines external observability, protocol
awareness, and flexible state modeling
without requiring source code access.
This makes it more adaptable and cost-
effective for real-world, stateful systems.

Page.10

ONONONONONONONG

O
0
| G
V)
Q
&
O
O
1%
0
O
I_
o)
=
N
N
D)
LL

YA
(— PEN

Greater control and support for complex stateful
systems

Most blackbox fuzzers operate as rigid binaries with
l[imited customization. YAGOfuzz, on the other hand, is a
flexible framework that allows users to craft and fine tune
inputs via Python and perform true stateful fuzzing using
finite state machine models, making it ideal for complex

real-world protocols.

Accessibility and deployment flexibility

Whitebox fuzzers require TOE source code and deep
instrumentation, which limits their use in proprietary or
embedded environments. YAGOfuzz requires no source
access. It integrates easily with CI/CD pipelines, making it
practical and scalable for agile security teams.

External control and observability

While greybox fuzzers rely on lightweight instrumentation
and internal feedback, they often fail with stateful or
session-based protocols. YAGOfuzz instead emphasizes
external control and observability. It defines complete
test flows and monitors system behavior from the outside

to define full test flows and track outcomes.

ONONONONONONONG

ONONONONONONG

OO0OO0OO0OO0O0o

O OOO0OO0
O O OO0
O O O

O O

Stateful Protocol
Support

No Source Code Required

Flexible Configuration

Crash + Log Monitoring

Protocol Coverage

CI/CD Integration

Distributed Scalability

Ease of Use for Dev Teams

Observability Without Instrumentation

Enterprise-Readiness

YAGOfuzz

Full FSM
modeling

Interface-level
only

Reusable &
intuitive

Multi-layer
(logs, output,
behavior)

Broad: Internet,
Automotive, |OT,
Smartcards +
easily
extendible.

Built-in
compatibility

Native multi-
instance
support

CLlI, config,
Python-based

External
system/log
analysis

Designed for
modern security
teams

Other Blackbox
Fuzzers

Very limited

Interface-level
only

Often static

Basic crash only

Protocol-
specific

Manual or
wrapper-based

Single-node
focus

Expert-only
setup

None

Too narrow

Whitebox
Fuzzers

Code-based

Required

Hardcoded or
missing

Internal tracing

Local code only

Challenging

Often serial
execution

High complexity

Internal only

Too heavy

Greybox
Fuzzers

Limited heuristics

Sometimes

Minimal

Coverage-based

File or CLI focused

Possible with
effort

Limited
parallelism

Moderate
scripting

Coverage metrics

Limited by
interface types

YAGOfuzz stands out in the crowded landscape
of fuzz testing tools by offering a unique
combination of flexibility, usability, and real-
world effectiveness that positions it ahead of
other blackbox fuzzers, and indeed, ahead of
many whitebox and greybox fuzzers currently in
use. It’s designed from the ground up to make
fuzzing more intuitive, reusable, and scalable,

without compromising on depth or flexibility.

Page.12

O O0OO0OO0OO0OO0O0O0

ONONONONONONG)

ONONONONONG)
ONONONONG)
ORORON

O OO

O O

Vehicles have evolved from
simple machines with isolated
control systems to complex,
interconnected networks
powered by tens of millions of
lines of code. While this shift
has greatly enhanced
performance and
connectivity, it has also
introduced significant
cybersecurity challenges.

The need for robust security
testing is no longer optional,
but it is a regulatory and
operational imperative.

YA
(— PEN

O
O
O
O
O
O
O
O

Automotive
Software

Modern vehicles are becoming more
connected and reliant on complex
software systems, enabling advanced
functionalities such as autonomous
driving and real-time data integration.
This increasing complexity, however,
expands the potential attack surface,
making cybersecurity a critical concern.
Fixing vulnerabilities after production can
be both costly and harmful to a
manufacturer's reputation.

Regulatory standards mandate that
automotive components demonstrate
resilience against cyber threats, including
malformed inputs, protocol misuse, and
logic manipulation. Identifying and
resolving software issues early in the
development process is essential to
ensure both compliance and long-term
product integrity.

YA
(— PEN

Road Vehicle
Cybersecurity
and Safety
Standards

&

ISO/SAE 21434 UNECE WP.29 R155
ISO 26262 Automotive SPICE

@YAGOfuzz supports compliance with key

automotive cybersecurity and safety
standards, delivering stateful fuzzing,
customizable protocol testing, and
comprehensive monitoring for robust
system protection.

Page.15

@)
@)
©)
©)
©)
O
@)
O

Challenges

Complex Regulations

Industry standards and compliance
checks, though essential for quality,
introduce delays and higher
development costs.

Emerging Threat Landscape

New security threats require
continuous, automated discovery
techniques.

Software Complexity

The growing size and interconnectivity
of automotive codebases make manual
testing impractical.

Page.16

YA
(— PEN

YAGOfuzz

A Strategic
Imperative

YAGOfuzz delivers strategic, stateful fuzzing for automotive systems with
customizable protocols, multi-target support, CI/CD integration, and advanced
monitoring.

ONONO.

Customizable Stateful Fuzzing with Hardware Flexibility
Protocol and Payload Automaton and Multi-Target
Modeling Integration Support

Headless Execution Advanced Monitoring,

and CI/CD Integration Logging, and
Repeatable Fuzzing

Campaign

YA
(— PEN

YAGOfuzz

Results &
Impact

The adoption of YAGOfuzz led to measurable improvements in security,
development efficiency, and regulatory compliance.

Increased YAGOfuzz has uncovered a wide range of critical issues,
Vulnerability including input validation flaws, logic bugs, protocol
Detection misimplementations, and crashable states in ECUs.

Thanks to its seamless integration with CI/CD pipelines and
Accelerated support for automated, repeatable test cases, teams have
Time-to-Fix significantly shortened the window between bug discovery
and resolution.

Enhanced By generating structured, protocol-aware fuzz tests and
Compliance comprehensive logs, YAGOfuzz helps satisfy key requirements
Support of automotive standards.

The absence of per-seat licensing and the open framework
Cost-Efficient design allow organizations to conduct parallel testing across
Scalability multiple test benches, ECUs, and environments without
incurring additional operational costs.

YAGOfuzz goes beyond
traditional fuzzing by combining
cost efficiency, openness, and
scalability with expert support.
Its extendible design adapts to
complex environments, while
YAGOBA'’s customization
services ensure every
deployment meets the unique
needs of the organization.

This combination of technology
and expert support transforms
YAGOfuzz from a security tool
into a long-term strategic
partner.

If your organization is ready to
strengthen resilience, meet
regulatory expectations, and
reduce security risk with a cost-
efficient and adaptable solution,
the next step is clear: connect
with YAGOfuzz experts and start
fuzzing smarter today.

Page.19

YA
(— PEN

YAGOfuzz
Experts

Christoph _Vanessa Srdan
Herbst Di Benedetto Ljepojevié
Chief Sales Product
Administrative Manager Owner
Officer

Ready to move beyond traditional fuzzing?

Start fuzzing smarter with YAGOfuzz

If you are interested in W fuzzing@yagoba.com

knowing more about
YAGOfuzz, you can connect
with us via these contact

details:

in www.yagoba.com

9 BeethovenstraBe 20, Graz (AT)

Page.20

https://www.yagoba.com/

YAGOfuzz

SCALABLE FUZZING FOR CONNECTED SYSTEMS

