
YAGOfuzz
SCALABLE FUZZING FOR CONNECTED SYSTEMS

Created by :

Yagoba GmbH

Executive Summary 1

Introduction 2

Fuzz Testing 3

YAGOfuzz 7

Fuzzing Tools Compared 10

Case Study 13

YAGOfuzz Experts 20

Contents

In today’s hyper-connected digital
infrastructure, software-driven
technologies lie at the core of
innovation in sectors such as
automotive, medical devices, and
IoT.
However, the growing complexity
of software-driven functionalities
brings significant cybersecurity
risks.
Fuzz testing has emerged as a
critical technique to expose hidden
vulnerabilities in protocols and
applications.
www.yagoba.com

YAGOfuzz is a powerful,
customizable black-box
fuzzing framework
designed to address
the limitations of
conventional fuzzing
tools.
With full access to
YAGOfuzz’s source
code, no running
license fees, and
support for custom
configurations, the tool
offers both depth and
flexibility in
vulnerability detection.

Executive
Summary

Page.01

https://www.yagoba.com/

With increasing regulatory
requirements and the
complexity of connected
systems, fuzzing is now a
security imperative.

Traditional fuzzing tools, while
valuable, are often limited by
costly licenses, seat restrictions,
and rigid configurations that
make them difficult to set up
and adapt.

YAGOfuzz removes these
barriers. With no license or seat
limitations, full source code
access, and total control over
test data, it gives organizations
the flexibility to adapt fuzzing to
their needs and integrate it
seamlessly into their security
processes.

Page.02

Fuzz testing, also known as fuzzing, is a
proven technique for discovering
vulnerabilities by feeding a system, that
we want to test, unexpected or
malformed inputs.
Fuzzing requires a tool called the fuzzer,
which generates random or unexpected
inputs, which are then sent to the Target
of Evaluation (TOE). The fuzzer then
monitors the TOE for crashes and
unexpected behaviour. If the TOE remains
stable, new input is created, and the
fuzzing process continues. If the crash
occurs, the defective input is marked and
stored in the crash database.

Fuzz
Testing

Page.03

Blackbox Fuzzers

Greybox Fuzzer
Greybox fuzzers are considered the “middle ground”

between whitebox and blackbox fuzzers, as they

have some knowledge about the TOE, in contrast to

blackbox fuzzers. Still, this knowledge is less

extensive than the one that whitebox fuzzers have.

Greybox fuzzers usually employ instrumentation as a

method of collecting feedback that will be used to

improve the inputs for the TOE.

Whitebox Fuzzer
Whitebox fuzzers have access to the internals of the

TOE and they try to take advantage of this

knowledge to reach the deeper states of the system

under test.

Blackbox fuzzers do not employ any techniques to

infer knowledge about the TOE. To improve

performance and reduce the overhead caused by

only sending strictly random inputs, some fuzzers

require testers to provide more information about

the input format. This knowledge is then used to let

the fuzzer know which parts of the input should be

randomly generated and which parts must stay

constant.

Ty
p

es
 o

f F
u

zz
er

s
Fuzzers can be classified based on the access they
have to the TOE internals and based on how they
utilize this knowledge to improve fuzzing.

Page.04

Mutation-Based Fuzzing
Mutates valid inputs to produce variants that test the

system's behaviour.

Block-Based Fuzzing
Generates inputs based on a structural knowledge of

the data (focusing on the ability to carry dynamic
values).

Model-Based (Smart) Fuzzing
Utilizes comprehensive protocol or format

knowledge, and sometimes even a state machine, to
produce efficient, targeted inputs.

Evolutionary Fuzzing
Uses mutations and feedback to refine and improve

input generation over time.

Identifies zero-
day vulnerabilities

Enhances code
robustness

Ensures better
input handling

Meets regulatory
expectations

It uncovers
previously

unknown security
flaws before

attackers can
exploit them.

By exposing
systems to

unpredictable
inputs, it helps

strengthen code
against crashes
and edge cases.

It simulates real-
world misuse,

helping
developers

validate and
harden input

validation logic.

It supports
compliance with

industry
standards that

require proactive
security

verification.

Fuzzing Techniques

Integration with SDLC
Fuzz testing can be integrated at various stages of the software development

lifecycle (SDLC), including development, integration testing, and release. It

complements traditional static and dynamic analysis methods by simulating real-

world input conditions that are difficult to anticipate.

Benefits of Fuzzing

Page.05

Limitations in Existing Fuzzing Tools

Despite its proven effectiveness, fuzz testing adoption has been hindered by

several persistent shortcomings:

Configurability
Many fuzzers lack flexible configuration mechanisms, especially when it comes to

defining what parts of the input should be fuzzed and which should remain static.

Moreover, configuration files are often written in proprietary formats that are

difficult to understand, reuse, or adapt across different protocols or systems.

Handling of Stateful Systems
Network protocols and complex applications often involve multi-step interactions

where the system’s response depends on its internal state or previous inputs. Most

fuzzers are designed for stateless testing and fail to track the state transitions

required to test such systems effectively.

High Operational Costs
Traditional tools impose their rigid and expensive licensing models. Many leading

fuzzers charge per seat or per project, often requiring annual subscriptions. These

costs escalate rapidly in large-scale environments such as automotive

development, where multiple teams, ECUs, and test environments are in constant

flux.

YAGOfuzz was created to address these
limitations head-on, offering a modern,
flexible, and cost-effective approach for
fuzzing at scale.

Page.06

YAGOfuzz

Easy, Flexible
Configuration

YAGOfuzz introduces a unified configuration format that
defines the structure of the input packets, specifies which
fields are to be fuzzed, and allows for the inclusion of fixed
values where necessary. The configuration format can be
reused across different protocols or projects, saving time and
reducing the overhead associated with setting up new fuzzing
campaigns.

Support for
Stateful
Systems

Many fuzzers only work with single, stateless inputs. YAGOfuzz
is different. It can model multi-step interactions using built-in
finite state machine logic. That means you can test login
sequences, authentication flows, or any protocol that requires
a conversation, not just one-off requests.

Smarter Bug
Detection

Not every bug causes a crash. YAGOfuzz goes beyond simple
fault detection by watching system logs, outputs, and other
behavioural signals that indicate something went wrong,
helping you catching both visible and hidden issues.

Scalable
Architecture

YAGOfuzz’s architecture is modular and supports distributed
operation, allowing multiple Workers to run on different
machines, all reporting back to a centralized Monitor. This
makes YAGOfuzz well-suited for large-scale fuzzing
campaigns that target complex systems. The ability to start
and stop Monitors without interrupting ongoing fuzzing
processes further enhances its flexibility.

Not just a black-box fuzzer, but a
scalable fuzzing framework designed
for easy configuration, stateful system
support, and smarter bug detection.

Page.07

Worker(s)Monitor TOE

Main fuzzing engine(s)
Data Creation
TOE Communication
Output/File Watching
Start/Reset/Stop
Mechanism

Dashboard for the fuzzing
process

Status observation of
Worker(s)
Status check of TOE

Item being tested.
Also called:

Device under test (DUT)
System under test (SUT)
Product under test (PUT)

Page.08

The YAGOfuzz framework is organized into three key components:
Worker(s) are the engines that generate test data, communicate with the
Target of Evaluation, handle the database, and monitor direct and indirect TOE
outputs. They execute the actual fuzzing, supporting a parallel execution.
Monitor oversees the fuzzing process by tracking worker activity and TOE
status. It provides a central dashboard for managing and observing ongoing
operations.
Target of Evaluation (TOE) represents the item being tested, such as a device,
system, or product.

This modular design makes YAGOfuzz highly adaptable, enabling it to scale across
multiple environments while maintaining clear separation of responsibilities.

Modular
Architecture

Architecture
Overview
YAGOfuzz architecture consists of a modular Worker core connected to monitoring
tools and the Target Of Evaluation (TOE).
The architecture is fully extensible and headless-ready, enabling seamless
integration into CI pipelines and protocol-specific test benches.

Monitor

Target Of
Evaluation

Automation Configuration File

Monitor Specific
Log File

Worker Specific
Log File Database File

Inputs

Outputs

Worker(s)

TOE
Output File

Input File(s)Input File(s)Input File(s)

Page.09

Page.10

Fuzzing Tools
Compared

Unlike traditional tools, YAGOfuzz
combines external observability, protocol
awareness, and flexible state modeling
without requiring source code access.
This makes it more adaptable and cost-
effective for real-world, stateful systems.

YAGOfuzz vs other Blackbox Fuzzers

YAGOfuzz vs Greybox Fuzzers
External control and observability
While greybox fuzzers rely on lightweight instrumentation

and internal feedback, they often fail with stateful or

session-based protocols. YAGOfuzz instead emphasizes

external control and observability. It defines complete

test flows and monitors system behavior from the outside

to define full test flows and track outcomes.

YAGOfuzz vs Whitebox Fuzzers
Accessibility and deployment flexibility
Whitebox fuzzers require TOE source code and deep

instrumentation, which limits their use in proprietary or

embedded environments. YAGOfuzz requires no source

access. It integrates easily with CI/CD pipelines, making it

practical and scalable for agile security teams.

Greater control and support for complex stateful
systems
Most blackbox fuzzers operate as rigid binaries with

limited customization. YAGOfuzz, on the other hand, is a

flexible framework that allows users to craft and fine tune

inputs via Python and perform true stateful fuzzing using

finite state machine models, making it ideal for complex

real-world protocols.

Fu
zz

in
g

 T
o

o
ls

 C
o

m
p

ar
ed

Page.11

YAGOfuzz
Other Blackbox

Fuzzers
Whitebox

Fuzzers
Greybox
Fuzzers

Stateful Protocol
 Support

Full FSM
modeling

Very limited Code-based Limited heuristics

No Source Code Required
Interface-level

only
Interface-level

only
Required Sometimes

Flexible Configuration
Reusable &

intuitive
Often static

Hardcoded or
missing

Minimal

Crash + Log Monitoring
Multi-layer

(logs, output,
behavior)

Basic crash only Internal tracing Coverage-based

Protocol Coverage

Broad: Internet,
Automotive, IOT,

Smartcards +
easily

extendible.

Protocol-
specific

Local code only File or CLI focused

CI/CD Integration
Built-in

compatibility
Manual or

wrapper-based
Challenging

Possible with
effort

Distributed Scalability
Native multi-

instance
support

Single-node
focus

Often serial
execution

Limited
parallelism

Ease of Use for Dev Teams
CLI, config,

Python-based
Expert-only

setup
High complexity

Moderate
scripting

Observability Without Instrumentation
External

system/log
analysis

None Internal only Coverage metrics

Enterprise-Readiness
Designed for

modern security
teams

Too narrow Too heavy
Limited by

interface types

YAGOfuzz stands out in the crowded landscape
of fuzz testing tools by offering a unique
combination of flexibility, usability, and real-
world effectiveness that positions it ahead of
other blackbox fuzzers, and indeed, ahead of
many whitebox and greybox fuzzers currently in
use. It’s designed from the ground up to make
fuzzing more intuitive, reusable, and scalable,
without compromising on depth or flexibility.

Page.12

Case
Study

Vehicles have evolved from
simple machines with isolated
control systems to complex,
interconnected networks
powered by tens of millions of
lines of code. While this shift
has greatly enhanced
performance and
connectivity, it has also
introduced significant
cybersecurity challenges.
The need for robust security
testing is no longer optional,
but it is a regulatory and
operational imperative.

Page.13

Modern vehicles are becoming more
connected and reliant on complex
software systems, enabling advanced
functionalities such as autonomous
driving and real-time data integration.
This increasing complexity, however,
expands the potential attack surface,
making cybersecurity a critical concern.
Fixing vulnerabilities after production can
be both costly and harmful to a
manufacturer's reputation.
Regulatory standards mandate that
automotive components demonstrate
resilience against cyber threats, including
malformed inputs, protocol misuse, and
logic manipulation. Identifying and
resolving software issues early in the
development process is essential to
ensure both compliance and long-term
product integrity.

Automotive
Software

Page.14

Road Vehicle
Cybersecurity
and Safety
Standards

Automotive SPICEISO 26262

ISO/SAE 21434 UNECE WP.29 R155

Page.15

YAGOfuzz supports compliance with key
automotive cybersecurity and safety
standards, delivering stateful fuzzing,
customizable protocol testing, and
comprehensive monitoring for robust
system protection.

Complex Regulations

Industry standards and compliance
checks, though essential for quality,
introduce delays and higher
development costs.

Emerging Threat Landscape

New security threats require
continuous, automated discovery
techniques.

Software Complexity

The growing size and interconnectivity
of automotive codebases make manual
testing impractical.

Challenges

Page.16

YAGOfuzz delivers strategic, stateful fuzzing for automotive systems with
customizable protocols, multi-target support, CI/CD integration, and advanced
monitoring.

YAGOfuzz
A Strategic
Imperative

Stateful Fuzzing with
Automaton
Integration

21

4 5

Customizable
Protocol and Payload

Modeling

Hardware Flexibility
and Multi-Target

Support

3

Headless Execution
and CI/CD Integration

Advanced Monitoring,
Logging, and

Repeatable Fuzzing
Campaign

Page.17

The adoption of YAGOfuzz led to measurable improvements in security,
development efficiency, and regulatory compliance.

YAGOfuzz
Results &
Impact

Increased
Vulnerability
Detection

YAGOfuzz has uncovered a wide range of critical issues,
including input validation flaws, logic bugs, protocol
misimplementations, and crashable states in ECUs.

Accelerated
Time-to-Fix

Thanks to its seamless integration with CI/CD pipelines and
support for automated, repeatable test cases, teams have
significantly shortened the window between bug discovery
and resolution.

Enhanced
Compliance
Support

By generating structured, protocol-aware fuzz tests and
comprehensive logs, YAGOfuzz helps satisfy key requirements
of automotive standards.

Cost-Efficient
Scalability

The absence of per-seat licensing and the open framework
design allow organizations to conduct parallel testing across
multiple test benches, ECUs, and environments without
incurring additional operational costs.

Page.18

Page.19

YAGOfuzz goes beyond
traditional fuzzing by combining
cost efficiency, openness, and
scalability with expert support.
Its extendible design adapts to
complex environments, while
YAGOBA’s customization
services ensure every
deployment meets the unique
needs of the organization.
This combination of technology
and expert support transforms
YAGOfuzz from a security tool
into a long-term strategic
partner.
If your organization is ready to
strengthen resilience, meet
regulatory expectations, and
reduce security risk with a cost-
efficient and adaptable solution,
the next step is clear: connect
with YAGOfuzz experts and start
fuzzing smarter today.

Srđan
Ljepojević

Christoph
Herbst

Product
Owner

Chief
Administrative

 Officer

Ready to move beyond traditional fuzzing?

Start fuzzing smarter with YAGOfuzz

fuzzing@yagoba.com

www.yagoba.com

‍Beethovenstraße 20, Graz (AT)

YAGOfuzz
Experts

If you are interested in
knowing more about
YAGOfuzz, you can connect
with us via these contact
details :

Page.20

Vanessa
Di Benedetto

Sales
Manager

https://www.yagoba.com/

YAGOfuzz
SCALABLE FUZZING FOR CONNECTED SYSTEMS

